

Talks – brief!

Epidemiology

Some of the many challenges that remain

Epidemiology

TB/HIV current situation: Testing for HIV in patients with TB

Epidemiology...

- In 2013, 6.1 million TB cases were reported to WHO
- Of the estimated 9 million people who developed TB in 2013, more than half (56%) were in the South-East Asia and Western Pacific Regions.
- An estimated 1.1 million (13%) of the 9 million people who developed TB in 2013 were HIVpositive
- Globally, the TB mortality rate fell by an estimated 45% between 1990 and 2013 and the TB prevalence rate fell by 41% during the same period.

Epidemiology...

- 48% of TB patients globally had a documented HIV test result
- In 2013, 70% of TB patients known to be HIV-positive were on ART.
- In 2013, the treatment success rate continued to be high at 86% among all new TB cases.
- By June 2014, 108 countries had access to Xpert MTB/RIF at concessional prices

Estimated TB incidence 2013

TB mortality in HIV

Factors Increasing the Risk of Tuberculosis

- HIV (800 x)
- Silicosis
- Immunocompromise
- Malignancy ¹
- Insulin-dependent diabetes mellitus
- Chronic renal failure
- G-I disease associated with malnutrition ²
- 1. Especially lymphoma, leukaemia
- 2. Gastrectomy, jejunoileal bypass, Ca pancreas, malabsorption

- Age (children > young adults)
- First generation immigrants from high prevalence countries
- Close contacts of patients with smear-positive pulmonary tuberculosis
- CXR evidence of self-healed tuberculosis
- Primary infection < 1 year previously

TB follows HIV

2006 - 709.000 co-infected 85% in Africa

FIGURE 1.7

Estimated incidence of TB and prevalence of HIV for the African subregion most affected by HIV (Africa high-HIV), 1990–2007

HIV prevalence in general population

South African Miners Cohort – Cumulative hazard estimate of TB incidence by HIV status

TB/HIV situation

9% HIV-infected patients had PTB (5% undiagnosed)

Case finding proportions for HIV- TB = 0.67 and for HIV+ TB = 0.37

Outcome of exposure to MTB – HIV negative

Timetable of primary tuberculosis

Time from infection	Manifestations
3-8 weeks	Primary complex, positive tuberculin skin test
3-6 months	Meningeal, miliary and pleural disease
Up to 3 years	Gastro-intestinal, bone and joint, lymph- node disease
Around 8 years	Renal tract disease
From 3 years onwards	Post-primary disease due to reactivation or re-infection

Adapted from Grange JM in Clinical Tuberculosis 1998. Editor PDO Davies

Outcome of exposure to MTB – HIV positive

Also in PTB with lower CD4

- Less often 'chest' presentation
- Reduced smear-positive rates: 40% vs. 70%
- Less cavitation
- Increased disseminated disease and extrapulmonary infection : > 60% vs <20%
- More 'covert/subclinical' disease ______ IRS
- More reactions to all TB drugs
- More MDRTB and higher mortality rate

Opportunistic diseases in the course of HIV-infection oral Candida-in

Radiological features of HIV+ patients

Cavitatory TB CD4+ 510 (23%)

Miliary TB CD4+ 194 (18%) Disseminated TB CD4+ 34 (8%)

Pulmonary vs extra-pulmonary TB: HIV+ vs HIV-

HIV-negative

PTB:EPTB = 80:20

Predominantly upper lobe involvement

Cavitation frequent.

Tuberculin positive

Sputum smear positive

Early HIV infection

Similar to that of HIVnegative persons

Late HIV infection

PTB:EPTB = 50:50

Multi-site, disseminated disease

Lower lobe involvement.

Intrathoracic lymphadenopathy frequent

Cavitation rare.

Tuberculin anergy

Sputum smear frequently negative

Mycobateraemia common

Patient AB – high CD4

- 43yr old heterosexual male; engineer contracted to Nigeria
- Several local partners: unsafe sex
- Admitted with fever, weight loss 6m, pain on swallowing and diarrhoea
- Increasing productive cough and breathlessness
- O/E: temp 38.5oC, cachectic, OCP, generalised lymphadenopathy, hepatosplenomegaly

Patient AB

- CXR:
- HIV +ve
- Induced sputum:
 - PCP -ve
 - AFB +ve
- Blood cultures –ve
- Absolute LC count 0.9
- CD4 320 cells/ml

Differential diagnosis

TB

- Bacterial (staphylococcal/klebsiella)
- Atypical mycobacterium
 - MAI
 - Mycobacterium kansasii
- Rhodococcus equi
- Meliodosis
- Nocardiosis
- Cryptococcus
- Aspergillus

CXR manifestations of Pulmonary TB

Major

- Collapse/ Consolidation
- Cavitation
- Mediastinal lymphadenopathy
- Miliary
- Pleural effusion

Less Common

- Pneumothorax
- Loculated empyema
- ARDS
- Cor Pulmonale
- Localised emphysema

Differential Diagnosis Of TB - related Pulmonary Disease: Chest X-ray Findings

Appearance	Major causes
Diffuse infiltrate	Pneumocystis jirovecii (carinii) pneumonia, tuberculosis, Kaposi's sarcoma, non-Hodgkin lymphoma, atypical bacterial pneumonia, viral pneumonitis, lymphoid interstitial pneumonitis
Cavitations	TB, Nocardia, Rhodococcus, bacterial pneumonia, aspergillus
Nodules/focal consolidation	Tuberculosis, Kaposi's sarcoma, non-Hodgkin lymphoma <i>Cryptococcus, Histoplasma</i>
Hilar lymphadenopathy	Tuberculosis, Kaposi's sarcoma, non-Hodgkin lymphoma, <i>Cryptococcus, Histoplasma</i>
Pleural effusion	Kaposi's sarcoma, tuberculosis, pyogenic bacterial pneumonia, primary effusion lymphoma

Patient BC – low CD4

- 37y-old White French born ex-IDU for 8y
- Lived in Spain till 2005, travelled Asia/Europe ++
- PMH pulmonary TB 1998, HCV +ve
- Presented with 6w history of fever, sweats, loss of weight
- HIV+ve, CD4 28 cells/mm3, VL 295,000 c/ml
- On methadone

Chronology of symptoms—

LN skin/oral abdomen chest/heart

Causes of PUO in late stage HIV

- Common:
 - TB
 - MAI
 - Lymphoma
- Less common:
 - PCP
 - Salmonellosis
 - Syphilis
 - CMV
 - Cryptococcus
 - IRIS

- Rare UK:
 - Histoplasmosis
 - Penicilliosis
 - Leishmaniasis
 - Bartonellosis
 - Coccidiodomycosis
 - Toxoplasmosis
 - Castleman's disease
 - Haemophagocytic syndrome

Patient BC

- AFB +ve:
 - Induced sputum
 - Lymph node biopsy
 - Bone marrow
- Covered for both MTB and MAI
- Mycobacteria isolated
 - Blood and tissues above
- TB identified RIF probe -ve

Pulmonary TB

HIV -ve HIV +ve CD4 >500 AFB +++ve/culture +ve

HIV +ve CD4 200-500 AFB scants/culture +ve

HIV +ve CD4 <200 AFB -ve/culture +ve

Identifying E-P and disseminated TB

No major differences between HIV+ve and HIV -ve

General rules

- In a patient with E-P TB HIV is more likely
- Occurs at younger age and often subclinical
- Often part of disseminated or multiple site disease or visceral disease
- If low CD4:
 - AFB +ve more common in biopsies
 - Mycobacteraemia more common
 - No granulomata / may present as IRS
- Often more difficult to manage

TB meningitis

TB meningitis

TBM: HIV +ve vs. HIV -ve

- No differences:
 - Clinical presentation
 - CSF findings
 - Blood parameters
 - Frequency of miliary picture
 - Neuroimaging abnormalities
- Significant difference:
 - Rate of AFB positivity CSF
 - Presence of extra-meningeal disease
 - Morbidity and mortality

TB spine

TB pericarditis

HAART is life saving in TB coinfected

Mortality among patients with prevalent active TB (n=73) initiating ART

But do you need to / when to Start ART?

CD4<350 Or ?<200 Or ?<100

Potential Benefits and Risks of Starting ART Immediately With TB Treatment

Benefits

- Reduced morbidity^{1,2}
- Reduced mortality^{1,2}
- Improved TB outcome

Risks

- Increased toxicity to TB and ART therapy³
- Drug interactions between HIV and TB medications³
- Pill burden
- Immune Reconstitution Syndromes (IRS)⁴

¹ Dean, AIDS, 2002; ²Pedral-Sampaio,2004, Brazil JID; ³Harries, Lancet, 2006; ⁴Lawn, Lancet ID, 2005

4 key studies on TB

• CAMELIA Cambodia PTB <500

• SAPIT South Africa PTB < 200

• STRIDE 4 ContinentsPTB < 250

NCT00433719 Vietnam TBM

CAMELIA strategy: CD4 <200: 2w vs. 8w?

Rd: Randomization

H: isoniazid Z: pyrazinamide R: rifampin E: ethambutol

D4T : stavudine 3TC : lamivudine EFV : efavirenz

Kaplan-Meier survival curves

ANRS 1295/12160 - CIPRA KH001/10425 study

SAPIT Study: Mortality in Sequential arm occurred ate Sept 2008: DSMB arm of the SAPIT trial stopped

Reduction in mortality rates was present in patients with CD4 counts above and below 200 cells/mm3

Karim SA et al. CROI 2009. Abstract 36...

SAPIT Study: Mortality in sequential arm occurred late Sept 2008: DSMB arm of the SAPIT trial stopped

Kaplan-Meier curve for AIDS or death in patients with CD4 <50 cells/mm³

68% reduction of AIDS / death (p=0.06)

A5221: STRIDE – study design

Presumed or confirmed TB; EFV TDF FTC: RIF based country approved regimen: <2w or 8-12w. 806 patients from 4 continents, Half had confirmed TB, Median CD4 77, Median 10d and 70d

When to start HAART (BHIVA 2009)

CD4 count	When to start		
< 100	As soon as practical		
100 - 350	As soon as practical, but can wait until 2 months of TB Rx, especially if difficulties with toxicity / adherence		
> 350	At physician discretion		

Is there enough evidence to give clear guidance on what level of CD4 and when into TB treatment one should start HAART?

NO – but don't wait until it's too late

Rifampicin

 The major problem is the use of rifampicin with HAART

• But it is an essential part of the solution for TB

TB-HIV drug interactions

	Rif	INH	PZA	Eth	Strep	RBT	RPT	Mox	Ethio	Cyclo	Capreo
SQV/r	•	•	♦	*	*			•	∇	•	*
RTV		*	•	•	•	-	-	•	∇	•	•
IDV	•	*	•	•	•	_	_	•	∇	•	•
NFV	•	*	•	•	•	-	-	•	∇	•	•
FPV/r	•	*	•	•	•	-	-	•	∇	•	•
LPV/r	•	*	•	•	•	-	-	•	∇	•	•
ATV/r	•	•	•	•	•	-	-	•	∇	•	•
TPV/r	•	•	•	•	•	-	-	•	∇	•	•
DRV/r	•	*		•		-	_	•	∇		<u> </u>
NVP	•	•	•	*	•	-	-	•	∇	•	•
EFV		•	•	•	•	-	-	•	∇	•	•
ETR	•	•	•	•	*	-	•	•	∇	*	<u> </u>
ZDV		•	•	*	•	•	∇	•	∇	•	•
3TC	•	•	•	•	•	•	•	•	∇	•	•
ddl	•	•	•	•	•	•	•	•	∇	•	•
d4T	•		•	•	•	•	•	•	∇	•	•
ABC	_	•	•	•	•	•	∇	*	∇	•	•
ddC	•	•	•	•	•	•	•	•	∇	•	•
FTC	•	•	•	•	•	•	•	•	∇	•	•
TDF	•	<u> </u>	<u> </u>	•		<u> </u>	<u> </u>	*	∇	<u> </u>	
ENF	•	*	*	•	•	*	•	•	•	*	*
MVC		, •	•	•	•			•	∇	•	•
RAL	-	*	•	*	*	•	•	•	∇	•	<u> </u>

Treatment of drug sensitive TB

- 90% of MTB dead in 2 days when regimen includes
 INH √
- 99% of MTB dead in 14 days when regimen also includes Rifampicin √
- If INH and RIF and PZA given in first 2 months then total course of TB treatment is 6 months √
- Debate whether HIV + should be treated for longer
- Debate whether use of quinolones could shorten to 4 months

Choices

- NNRTI's:
 - Nevirapine
 - Efavirenz
- PI/r
- 3NRTI
- New drugs:
 - Raltegravir
 - Maraviroc
 - Etravirine
 - T-20

Nevirapine and rifampicin

Standard dose?

• Increased dose?

Problems of Lead in

PK interactions between EFV and rifampicin in HIV patients with TB

- EFV peak, trough and AUC decreased 24%, 25% and 22% in the presence of rifampicin √
- Large inter patient variability observed, suggesting use of TDM √
- PK of EFV 800 mg plus rifampicin similar to those of EFV 600 mg without rifampicin √
- Rifampicin PK did not change substantially in the presence of efavirenz √

Body Weight Cutoff for EFV Dosing in Combination with Rifampicin

- 71 patients in Thailand taking anti-TB Rx, initiating HAART with EFV 600mg + d4T/3TC
- EFV concentrations at 12h after dosing at weeks 6
 & 12
- High body weight associated with low C12 EFV at weeks 6 & 12
- C12 EFV of 1mg/l at mean weight of 57.5kg
- 60kg weight cutoff appropriate for EFV dose escalation 600 → 800mg

NNRTIs with anti-TB drugs (BHIVA 2009)

	Rifampicin	Rifabutin	Clarithromycin	
EFAVIRENZ	Efavirenz levels ↓ by 20–30% Rifabutin levels ↓ by 38%.		No significant interaction	
	Efavirenz increased to 800mg daily if weight	Rifabutin increased to 450mg daily	Use standard doses Reports of ↑ rates of rash: consider Azithromycin instead (no interaction)	
	>60kg Efavirenz at 600mg daily if weight <60kg	Efavirenz at standard dose		
	Rifampicin at standard dose			
NEVIRAPINE	VIRAPINE Nevirapine levels ↓ 20– 55%		No significant interaction	
	No change in rifampicin Not recommended	recommended	Use standard doses	
ETRAVIRINE	No data available but expected ↓↓↓ etravirine	Etravirine levels ↓ 37% Rifabutin 17%	Use with caution	
RILPIVIRINE	TMC-278 levels ↓ 90%	TMC-278 levels ↓ 50%		
	Do not use	Double dose TMC-278		

Choices

- NNRTI's:
 - Nevirapine
 - Efavirenz
- PI/r
- 3NRTI
- New drugs:
 - Raltegravir
 - Maraviroc
 - Etravirine
 - T-20

Boosted PIs and Rifampicin Interaction

Lopinavir/rit

Saquinavir/rit

- Ritonavir 400 bid required
- GI toxicity and lipid perturbation
- High rates of elevated transaminase¹ (5/7 dropouts)¹
- Plus recent PK study²
 -LFT problems

- Early studies from SA suggested could be used
- SQV 1000/rit100 BID³
- All patients in this arm experienced grade 4 transaminase elevations³

^{1.} La Porte et al. AAC 2004;48(5):1553-1560

^{2.} Nijland AIDS. 2008 May 11;22(8):931-5.

TB Treatment Regimens: Rifabutin

HAART	Dose	TB therapy	Dose	
NRTI	No change	RBT	No change	
Boosted PI	No change RBT		150? mg 2-3/7	
nevirapine	nevirapine 200 mg bd		300 mg od	
efavirenz	600 mg od	RBT	450 mg od	

Choices

- NNRTI's:
 - Nevirapine
 - Efavirenz
- PI/r
- 3NRTI
- New drugs:
 - Raltegravir
 - Maraviroc
 - Etravirine
 - T-20

Interactions with raltegravir

Rifabutin

 No dose change required of either drug

Rifampicin

 The co-administration of 800 mg q12hr RAL with 600 mg qd RIF resulted in a 53% decrease in RAL C12hr relative to 400 mg q12hr RAL alone

BHIVA TB Guidelines

Boosted PI

Rifampicin: Not recommended

Rifabutin: 150mg x 3 per week , boosted PI dosed as

normal

Integrase inhibitors (raltegravir / elvitegravir)

Rifampicin: Do not use / not recommended

Rifabutin: Use with caution / not recommended

Entry Inhibitors (Maraviroc / T20)

Rifampicin: Not recommended / use standard doses

Rifabutin: Use standard doses

Treatment

Drug therapy

- 1944 Streptomycin
- 1949 PAS
- 1952 Pyrazinamide
- 1954 Isoniazid
- 1955 Cycloserine
- 1962 Ethambutol
- 1963 Rifampicin
- Quadruple therapy:
 - rifampicin + isoniazide+ pyrazinamide+ ethambutol 2/12
 - Rifampicin + isoniazid 4/12

Patient AB

- CXR:
- HIV +ve
- Induced sputum:
 - PCP -ve
 - AFB +ve
- Blood cultures –ve
- Absolute LC count 0.9
- CD4 320 cells/ml

TB-associated Immune Reconstitution Disease (IRD)

- Retrospective cohort of incidence of IRD in TB patients in first 4 months of starting ARV in South Africa
- IRD developed in 19; 141 did not develop IRD
- IRD occurred in 32% of those who started ART within 2 months of TB diagnosis
- 84% had pulmonary and 37% intra-abdominal IRD

In multivariate analysis, risk of IRD strongly associated with early ARV initiation and CD4 count.

How common is IRIS? TB-associated IRD

Interval from TB diagnosis to ART initiation (days)

All patients with CD4 <50 cells/mm³ developed IRD if ART initiated in first month

Low risk of death overall (1.3%): mostly self-limiting.

Time to initiation of open label prednisone

How to manage TB-IRIS

- Background: occurs in 8-43%, anecdotal reports steroids beneficial but concerns may worsen KS/CMV
- **Hypothesis:** 4w prednisolone would reduce need for medical interventions, be safe and not ↑ infections

Design:

- Prednisolone or placebo, randomised double blind
- 1.5mg/kg for 2 weeks then 0.75mg/kg for 2 weeks
- Follow-up assessments: 1, 2, 4, 8, and 12 weeks
- Open-label at physicians' discretion if clinical deterioration/relapse

Primary endpoint:

• Cumulative number of days and OPD therapeutic procedures (arbitrarily counted as 1 additional day), ITT analysis

Case definition & enrolment

Case definition:

Prior to ART

- •Evidence of TB
- •Initial improvement with TB treatment
- •Still on TB treatment
- •RIF-sensitive strain

Within 3m of starting ART

- •New/recurrent TB symptoms
- •Presence of ≥ 1 of: \uparrow LN, cold abscess, serous effusions,

lung infiltrates

287 screened (June 2005-Dec 2007)

Exclusion criteria:

KS

Prior ART

Life-threatening IRIS

Alternative diagnosis = 44

Did not fulfil case definition = 65

Exclusion criterion = 55

Unwilling/unable to consent = 13

Enrolled = 110

Placebo = 55
Died (2), defaulted (6),
rifampicin resistance (6),
discontinued study drug (3)

Prednisolone = 55
Died (3), defaulted (0),
rifampicin resistance (4),
discontinued study drug (1)

Symptom score

Chest Radiograph score

Ultrasound score demonstrated no differences at week 2 or 4

Primary endpoint/AE

Cumulative number of days and OPD therapeutic procedures (counted as 1 additional day), ITT analysis

	Placebo arm (n=55)	Prednisolone arm (n=55)	P-value
Total days hospitalised	463	282	
Total OPD procedures	31	27	
Cumulative 1° endpoint (median, IQR)	3 (0-9)	1 (0-3)	0.046

	Placebo Arm	Prednisone Arm	P-value
Death on Study	2 (4%)	3 (5%)	0.65
Corticosteroid side effects*	18 (33%)	12 (22%)	0.20
Corticosteroid side effectswhile on study drug	3 (5%)	8 (15%)	0.11
Infections	30 (55%)	36 (65%)	0.24
Severe Infections**	4 (7%)	2 (4%)	0.40

Conclusions

- Prednisolone reduced need for medical interventions (days hospitalised and outpatients procedures combined)
- Consistent benefit maximal in 1st 4 weeks:
 - Symptom score, CRP, radiology score, Karnofsky score
- Benefits shown despite crossovers to OL prednisolone
- No excess of steroid complications
- 4 weeks may have been too short and tapering dose probably better

Thank you

For further information please contact:

Jean-Marc Debricon CEO

jm@greenshootsfoundation.org

Mobile: +44 7595 600 766

UK charity number 1138412

US 501(c)(3) registered

UK

Green Shoots Foundation

P.O. Box 63678

London, SW11 9BD

General enquiries: info@greenshootsfoundation.org

Website: www.greenshootsfoundation.org

