

Hepatitis B

Sanjay Bhagani, Royal Free Hospital/UCL London

Overview

- Epidemiology
- Virology and life-cycle of HBV
- Natural history, disease and staging
- Treatment
- Treatment-related outcomes
- Preventing MTCT of HBV
- Re-activation with immune suppression therapy

HBV - a global problem

Global mortality from viral hepatitis

HBV Genotypes: Epidemiology

- HBV classified into 8 well-documented genotypes (A-H)
 - A: North America, Western Europe, and Africa
 - B and C: Asia
 - D: Southern Europe, Africa, and India
 - E: West Africa
 - F: Central and South America and Alaska
 - G: United States, France, and Germany
 - H: Central America
- Genotype B associated with less active disease, slower progression, and lower incidence of HCC than genotype C
- Genotypes A and B respond better to IFN than genotypes C and D

Geographical distribution of HBV genotypes A to H

North Europe & USA - A

Mediterranean basin - D

Africa India A, D&E A

Rare types:

F – Latin America

G –France, USA

H – Mexico, Latin America

Far East B & C

Modes of HBV Transmission

- Spread via exposure to blood and bodily fluids
- Need a break in skin or mucus membrane
- Found in semen, saliva, vaginal mucus, and tears but at levels 1000-fold lower than in serum
- Not found in urine, sweat, or stool

Outcome of HBV Infection by Age of Transmission

Geographic Differences in Epidemiologic and Clinical Characteristics

Characteristic	Asia/Sub-Saharan Africa	N America/W Europe
Endemicity	High	Low
Age of infection	Birth, toddler	Early adulthood
Primary mode of transmission	Perinatal, horizontal	Percutaneous, sexual
Chronicity	Common	Rare
Risk of cirrhosis	High	Low
Risk of HCC	High	Low

Hepatitis B Disease Progression

1. CDC. HBV FAQs for health professionals. 2. Torresi J, et al. Gastroenterology. 2000;118(2 suppl 1):S83-S103. 3. Fattovich G, et al. Hepatology. 1995;21:77-82. 4. Seaberg EC, et al. Clin Transpl. 1998:17-37.

Blood/serum markers in HBV Infection

- HBsAg
 - Marker of chronic hepatitis B when found in serum > 6 months
- Anti-HBs
 - Marker of immunity
- HBeAg
 - An index of active viral replication and high infectivity
 - Only produced by Wild Type HBV (pre-core/core-promotor mutants lose ability produce 'e'Ag)
- Anti-HBe
 - Appears in recovery phase and is present/absent in reactivation phase
- Anti-HBc
 - Marker of past and possibly current infection
 - IgM anti-HBc marker of recent infection
- HBV DNA
 - Reported in IU/ml (5 copies/ml = 1 IU/ml)

4 Phases of Chronic HBV Infection

Current Understanding of HBV Infection

Yim HJ, et al. Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology. 2006;43:S173-S181. Copyright © 1999–2012 John Wiley & Sons, Inc. All Rights Reserved.

Natural history of HBV infection – a continuum of interplay between host/virus

Natural history of HBV infection – where does HIV co-infection fit in?

Treatment of HBV - aims

- Ultimate aims
 - Prevent progression to ESLD/death
 - Prevent HCC
 - Prevent transmission of HBV (NB: Vaccination also available)

When do we need to Rx HBV?

Everybody with detectable HBV DNA?

Based on HBV DNA levels?

- Those with evidence of significant liver disease?
 - Based on abnormal ALTs?
 - Histological activity/Fibrosis scores?

Level of HBV DNA (c/ml) at entry & progression to cirrhosis in population-based cohort studies

3582 HBsAg untreated asian carriers mean follow-up 11 yrs → 365 patients newly diagnosed with cirrhosis

^{*} Adjusted for age, sex, cigarette smoking, and alcohol consumption.

HBV-DNA viral load (> 10⁴ cp/ml) strongest predictor of progression to cirrhosis independent of ALT and HBeAg status

HBV DNA and immune response = engine
ALT/Histological Activity Index (inflammation) = train speed
Fibrosis stage = distance from canyon

What does Rx aim to achieve?

End-points of HBV Treatment

- Primary
 - HBV DNA suppression
- Secondary
 - Normalisation of ALT
 - Improvement in histology
 - Anti-HBe sero-conversion (for HBeAg+)
 - HBsAg loss and anti-HBs sero-conversion

HBV Treatment Landscape

Anti-HBV drugs

Genetic barrier

When to Start HBV Treatment?

Benefits

Likelihood of

- Adverse outcome without treatment
- Long-lasting response

Patient's age and preference Costs

Risks

Adverse effects Drug resistance

Likelihood of adverse outcome without treatment

Activity and stage of liver disease at presentation Risk of cirrhosis/HCC in the next 10-20 yrs

Likelihood of long-term benefit with treatment

Three key inter-linked factors in the decision to treat

- Age
 - -<30yrs vs. >30yrs
 - FH of HCC
- Level of fibrosis/inflammation
 - Cirrhosis
 - F2+ fibrosis
 - Abnormal liver enzymes
- HBV DNA levels
 - ->20 000 IU/ml

Determining Treatment Candidacy for Chronic Hepatitis B: Guidelines

Guidelines	HBeAg Positive		HBeAg Negative	
	HBV DNA, IU/ mL	ALT	HBV DNA, IU/ mL	ALT
AASLD 2009 ^[1]	> 20,000	> 2 x ULN or positive biopsy*	≥ 20,000	≥ 2 x ULN or positive biopsy*
EASL 2009 ^[2]	> 2000	> ULN	> 2000	> ULN
APASL 2008 ^[3]	≥ 20,000	> 2 x ULN	≥ 2000	> 2 x ULN
NIH Consensus Conference 2009 ^[4]	> 20,000	> 2 x ULN or positive biopsy*	≥ 20,000	≥ 2 x ULN or positive biopsy*

^{*}Moderate/severe inflammation or significant fibrosis.

Expert guidelines also published with recommendations specific for HBV
 management in US^[5] and more recently for Asian Americans^[6] Liew YF, et al.

Some key differences between these guidelines

ALGORITHM OF WHO RECOMMENDATIONS ON THE MANAGEMENT OF PERSONS WITH CHRONIC HEPATITIS B INFECTION²

EACS Guidelines 2014 - HBV in HIV+

Assessment of treatment indication for HBV infection in HIV-positive individuals

Note: In patients with significant liver fibrosis (F2-F3), anti-HBV treatment might be considered even when serum HBV-DNA is below 2000 IU/mL and liver enzymes are not elevated.

Current Guideline Recommendations for First-line Therapy

- Peginterferon alfa-2a
 - Exceptions: pregnancy, chemotherapy prophylaxis, decompensated cirrhosis, acute infection
- Entecavir
- Tenofovir

PegIFN vs. Nucleos(t)ide Analogues

Pe	gIFN	Nucleos(t)ide	Analogues
Pro	Con	Pro	Con
 Finite course of therapy No resistance Higher rate of HBeAg loss in 1 yr Higher rate of HBsAg loss with short duration therapy* 	 SC administration Frequent AEs Contraindicated in patients with cirrhosis, in pregnancy, with acute hepatitis B, and who are immunosuppresse d 	 PO administration Infrequent AEs Safe at all stages of disease, including decompensated cirrhosis Safe in immunocompromised populations Selected drugs probably safe in pregnancy 	 Need for long- term or indefinite therapy Potential for drug resistance

Lok AS, et al. Hepatology. 2007;45:507-539. Lok AS, et al. Hepatology. 2009;50:661-662. Lok AS. Hepatology. 2010;52:743-747. Buster EH, et al. Gastroenterology. 2008;135:459-467. Lange CM, et al. Hepatology. 2009;50:2001-2006.

^{*}Particularly for HBeAg-positive patients with genotype A infection.

5-Yr Rates of Resistance With Oral Agents in Nucleos(t)ide-Naive Patients

^{*}Telbivudine rate determined at Yr 2.

Genetic Barrier

The number of substitutions needed for primary antiviral drug resistance

– LAM/TBV: rtM204V/I

– ADV: rtN236T

Combination of low genetic barrier drugs: at least 2 mutations required

- ETV: at least 3 mutations required:
 - rtL180M + rtM204V + one of
 - rtT184 or rtS202 or rtM250 change

Impact of lamivudine resistance on progression of liver disease

More than just 'drug resistance'

- Overlapping Pol and S
- Mutations in Pol changes in S
- ADASMs Antiviral Drug-Associated S mutations
- ADAPVEMS Antiviral Drug Associated Potentially Vaccine (and detection) Escape Mutations
- Associated with L-nucleosides and Entacavir, possibly with adefovir

Selection of Entecavir vs Tenofovir: Either Is an Excellent Choice for Most Patients

Parameter	Entecavir	Tenofovir
Log HBV DNA ↓ at Wk 48-52		
 HBeAg positive 	6.9	6.2
HBeAg negative	5.0	4.6
Genotypic resistance, %		
NA naive	1.2 (Yr 5)	0 (Yr 3)
Lamivudine experienced	51 (Yr 5)	NR
Pregnancy rating	Class C	Class B
AEs	None	Renal toxicity; ↓ BMD

Management options for HIV/HBV co-infection

Studies 102/103: Long-term Histology Study During Open-Label Follow-up

- 2 randomized, double-blind, placebo-controlled phase III trials
- All pts received open-label TDF after Yr 1 for a total study duration of 8 yrs*
- Liver biopsies obtained at baseline, Yr 1, and Yr 5 (nonmandatory)

^{*}FTC could be added for confirmed viremia on/after Wk 72.

Non-histologic Efficacy Results at Yr 5

On Treatment Response, % (n/N) ^[14]	HBeAg- Patients	HBeAg+ Patients
HBV DNA < 400 copies/mL	99 (292/295)	97 (170/175)
ALT ≤ 1 x ULN	85 (236/277)	73 (124/169)
HBeAg loss		49 (81/165)
HBsAg loss	0	10* (6.8-14.7)

96% of Pts Treated With Tenofovir Had Stable or Improved Fibrosis at Yr 5

- Pts with Ishak score ≥ 4: 38% at baseline, 12% at Yr 5
- Pts with cirrhosis (Ishak score ≥ 5): 28% at baseline, 8% at Yr 5 (n=96)

N = 348 matched biopsies Marcellin P, et al. Lancet. 2013;381:468-475.

Fibrosis Improvement at Yr 5 by Baseline Ishak Fibrosis Score

Success in clinical end-points

Tenofovir Studies 102/103 HCC Incidence Based on Cirrhosis Status at Baseline

However, cirrhotics remain 'at risk'

Observed vs Predicted HCC Cases: Noncirrhotics

*Statistically significant at nominal α-level of 0.05. CI, confidence interval; SIR, standardized incidence ratio.

Observed vs Predicted HCC Cases: Cirrhotics

Combining Nuc + PegIFN

Study Design

- Randomized, controlled, open-label study (N=740)
 - Stratified by screening HBeAg status and HBV genotype
- Inclusion criteria
 - HBeAg+ and HBV DNA ≥20,000 IU/mL; HBeAg- and HBV DNA ≥2,000 IU/mL
 - ALT >54 and ≤400 U/L (men); ALT >36 and ≤300 U/L (women)
 - No bridging fibrosis or cirrhosis on liver biopsy or by transient elastography

HBsAg loss at week 72

 7 patients had HBsAg seroreversion on or after Week 48 (4 [TDF + PEG 48 wk], 3 [TDF + PEG 16 wk → TDF 32 wk])

Preventing Perinatal HBV Transmission: Why Is It So Important?

 Risk of progression to chronic infection is inversely related to age at infection

Risk of Perinatal Transmission Associated With HBV DNA Level and HBeAg Positivity

- 213 pregnant HBsAg-positive women with detectable HBV DNA; 138 infants tested at 9 mos of age
- 2.9% (4/138) of infants were HBsAg positive
- In all 4 cases of transmission, mothers were HBeAg positive and had very high HBV DNA (> 8 log₁₀ copies/mL)

Infants received HBIG 100 IU within 12 hrs of birth and HBV vaccination at 0, 2, 4, and 6 mos of age

Algorithm for HBV Management in Women During Pregnancy

*The cut-off level of maternal HBV DNA level for initiation of therapy is unclear, and HBV DNA from 6-8 log₁₀ IU/mL can be considered for therapy based on physician and patient preference.

[†]Tenofovir is preferred if treatment is expected to be > 12 weeks or if treatment is expected to continue while breastfeeding.

Risk of Reactivation by Disease

- Bone marrow transplantation
- Organ transplantation
- Leukemia
- Lymphoma
- Myeloma
- Solid tumors
- HIV
- Autoimmune diseases
- Inflammatory bowel disease

Risk Increased with Rituximab Therapy

HBV Management in Pts Receiving Chemotherapy, Immunosuppressive Rx

HBV life cycle

Trepo et al, Lancet 2014, Wieland et al, PNAS, 2005; Sadler & Williams, Nat Rev Immunol 2008

For the (near) future

